翻訳と辞書 |
Medial graph : ウィキペディア英語版 | Medial graph
In the mathematical discipline of graph theory, the medial graph of plane graph ''G'' is another graph ''M(G)'' that represents the adjacencies between edges in the faces of ''G''. Medial graphs were introduced in 1922 by Ernst Steinitz to study combinatorial properties of convex polyhedra, although the inverse construction was already used by Peter Tait in 1877 in his foundational study of knots and links. == Formal definition == Given a connected plane graph ''G'', its medial graph ''M(G)'' has * a vertex for each edge of ''G'' and * an edge between two vertices for each face of ''G'' in which their corresponding edges occur consecutively. The medial graph of a disconnected graph is the disjoint union of the medial graphs of each connected component. The definition of medial graph also extends without modification to graph embeddings on surfaces of higher genus.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Medial graph」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|